Photosynthesis Response and Transcriptional Analysis: Dissecting the Role of SlHB8 in Regulating Drought Resistance in Tomato Plants

Author:

Yang Yinghua1,Zhang Xinyue1,Zhong Qiuxiang1,Liu Xiaojuan1,Guan Hongling1,Chen Riyuan1,Hao Yanwei1ORCID,Yang Xiaolong1ORCID

Affiliation:

1. College of Horticulture, South China Agricultural University, Guangzhou 510642, China

Abstract

Deciphering drought resistance in crops is crucial for enhancing water productivity. Previous studies have highlighted the significant role of the transcription factor SlHB8 in regulating developmental processes in tomato plants but its involvement in drought resistance remains unclear. Here, gene overexpression (SlHB8-OE) and gene knockout (slhb8) tomato plants were utilized to study the role of SlHB8 in regulating drought resistance. Our findings showed that slhb8 plants exhibited a robust resistant phenotype under drought stress conditions. The stomata of slhb8 tomato leaves displayed significant closure, effectively mitigating the adverse effects of drought stress on photosynthetic efficiency. The slhb8 plants exhibited a decrease in oxidative damage and a substantial increase in antioxidant enzyme activity. Moreover, slhb8 effectively alleviated the degree of photoinhibition and chloroplast damage caused by drought stress. SlHB8 regulates the expression of numerous genes related to photosynthesis (such as SlPSAN, SlPSAL, SlPSBP, and SlTIC62) and stress signal transduction (such as SlCIPK25, SlABA4, and SlJA2) in response to drought stress. Additionally, slhb8 plants exhibited enhanced water absorption capacity and upregulated expression of several aquaporin genes including SlPIP1;3, SlPIP2;6, SlTIP3;1, SlNIP1;2, and SlXIP1;1. Collectively, our findings suggest that SlHB8 plays a negative regulatory role in the drought resistance of tomato plants.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3