Analysis of the Vibration Characteristics of a Leaf Spring System Using Artificial Neural Networks

Author:

Çetinkaya Mehmet BahadırORCID,İşci MuhammedORCID

Abstract

The real-time vibrations occurring in a leaf spring system may cause undesirable effects, such as stresses, strains, deflections, and surface deformations over the system. In order to detect the most appropriate working conditions in which the leaf spring system will work more stably and also to design optimized leaf spring systems, these external effects have to be detected with high accuracy. In this work, artificial neural network-based estimators have been proposed to analyze the vibration effects on leaf spring systems. In the experimental studies carried out, the vibration effects of low, medium, and high-pressure values applied by a hydraulic piston on a steel leaf spring system have been analyzed by a 3-axial accelerometer. After the experimental studies, the Radial Basis Artificial Neural Network (RBANN) and Cascade-Forward Back-Propagation Artificial Neural Network (CFBANN) based nonlinear artificial neural network structures have been proposed to analyze the vibration data measured from the leaf spring system under relevant working conditions. The simulation results represent that the RBANN structure can estimate the real-time vibrations occurring on the leaf spring system with higher accuracy and reaches lower RMS error values when compared to the CFBANN structure. In general, it can be concluded that the RBANN and CFBANN network structures can successfully be used in the estimation of real-time vibration data.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference28 articles.

1. Numerical and experimental analysis of nonlinear parabolic springs employed in suspension system of freight cars;Younesian;Int. J. Automot. Eng.,2014

2. The fracture of two-layer leaf spring: Experiments and simulation

3. Study on dynamic characteristics of leaf spring system in vibration screen

4. Analysis of composite leaf spring using ANSYS software;Ali;Mater. Today,2021

5. Static stress analysis of suspension systems for a solar-powered car

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3