Artificial Neural Network Structure Optimisation in the Pareto Approach on the Example of Stress Prediction in the Disk-Drum Structure of an Axial Compressor

Author:

Kozakiewicz Adam,Kieszek RafałORCID

Abstract

The article presents the process of selecting and optimising artificial neural networks based on the example of determining the stress distribution in a disk-drum structure compressor stage of an aircraft turbine engine. The presented algorithm allows the determination of von Mises stress values which can be part of the penalty function for further mass optimization of the structure. A method of a parametric model description of a compressor stage is presented in order to prepare a reduced stress distribution for training artificial neural networks. A comparative analysis of selected neural network training algorithms combined with the optimisation of their structure is presented. A genetic algorithm was used to determine the optimal number of hidden layers and neurons in a layer. The objective function was to minimise the absolute value of the relative error and standard deviation of stresses determined by FEM and artificial neural networks. The results are presented in the form of the Pareto front due to the stochastic optimisation process.

Funder

Military University of Technology in Warsaw

Publisher

MDPI AG

Subject

General Materials Science

Reference49 articles.

1. A logical calculus of the ideas immanent in nervous activity

2. Performance analysis of various activation functions in generalized MLP architectures of neural networks;Karlik;Int. J. Artif. Intell. Expert Syst.,2011

3. The Organization of Behavior: A Neuropsychological Theory;Hebb,2005

4. Optimization of Process Parameters for Powder Bed Fusion Additive Manufacturing by Combination of Machine Learning and Finite Element Method: A Conceptual Framework

5. FEM based robust design optimization with Agros and Ārtap

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3