Structural Strength Analyses for Low Brass Filler Biomaterial with Anti-Trauma Effects in Articular Cartilage Scaffold Design

Author:

Lim Yan YikORCID,Miskon Azizi,Zaidi Ahmad Mujahid Ahmad

Abstract

The existing harder biomaterial does not protect the tissue cells with blunt-force trauma effects, making it a poor choice for the articular cartilage scaffold design. Despite the traditional mechanical strengths, this study aims to discover alternative structural strengths for the scaffold supports. The metallic filler polymer reinforced method was used to fabricate the test specimen, either low brass (Cu80Zn20) or titanium dioxide filler, with composition weight percentages (wt.%) of 0, 2, 5, 15, and 30 in polyester urethane adhesive. The specimens were investigated for tensile, flexural, field emission scanning electron microscopy (FESEM), and X-ray diffraction (XRD) tests. The tensile and flexural test results increased with wt.%, but there were higher values for low brass filler specimens. The tensile strength curves were extended to discover an additional tensile strength occurring before 83% wt.%. The higher flexural stress was because of the Cu solvent and Zn solute substituting each other randomly. The FESEM micrograph showed a cubo-octahedron shaped structure that was similar to the AuCu3 structure class. The XRD pattern showed two prominent peaks of 2θ of 42.6° (110) and 49.7° (200) with d-spacings of 1.138 Å and 1.010 Å, respectively, that indicated the typical face-centred cubic superlattice structure with Cu and Zn atoms. Compared to the copper, zinc, and cart brass, the low brass indicated these superlattice structures had ordered–disordered transitional states. As a result, this additional strength was created by the superlattice structure and ordered–disordered transitional states. This innovative strength has the potential to develop into an anti-trauma biomaterial for osteoarthritic patients.

Funder

Ministry of Higher Education

Publisher

MDPI AG

Subject

General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3