Improved Indoor Positioning by Means of Occupancy Grid Maps Automatically Generated from OSM Indoor Data

Author:

Graichen ThomasORCID,Richter JuliaORCID,Schmidt RebeccaORCID,Heinkel UlrichORCID

Abstract

In recent years, there is a growing interest in indoor positioning due to the increasing amount of applications that employ position data. Current approaches determining the location of objects in indoor environments are facing problems with the accuracy of the sensor data used for positioning. A solution to compensate inaccurate and unreliable sensor data is to include further information about the objects to be positioned and about the environment into the positioning algorithm. For this purpose, occupancy grid maps (OGMs) can be used to correct such noisy data by modelling the occupancy probability of objects being at a certain location in a specific environment. In that way, improbable sensor measurements can be corrected. Previous approaches, however, have focussed only on OGM generation for outdoor environments or require manual steps. There remains need for research examining the automatic generation of OGMs from detailed indoor map data. Therefore, our study proposes an algorithm for automated OGM generation using crowd-sourced OpenStreetMap indoor data. Subsequently, we propose an algorithm to improve positioning results by means of the generated OGM data. In our study, we used positioning data from an Ultra-wideband (UWB) system. Our experiments with nine different building map datasets showed that the proposed method provides reliable OGM outputs. Furthermore, taking one of these generated OGMs as an example, we demonstrated that integrating OGMs in the positioning algorithm increases the positioning accuracy. Consequently, the proposed algorithms now enable the integration of environmental information into positioning algorithms to finally increase the accuracy of indoor positioning applications.

Funder

Technische Universität Chemnitz

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Ultra-Wideband Autonomous Integrity Monitoring Algorithm Based on Post-Test Residuals;2023 International Conference on Intelligent Communication and Networking (ICN);2023-11-10

2. New Composite Nighttime Light Index (NCNTL): A New Index for Urbanization Evaluation Research;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2023

3. A Cartographic Framework for Autonomous Mobile Robot Using OpenStreetMap Data;2022 2nd International Conference on Robotics, Automation and Artificial Intelligence (RAAI);2022-12-09

4. A Novel Ultra-Wideband Double Difference Indoor Positioning Method with Additional Baseline Constraint;ISPRS International Journal of Geo-Information;2021-09-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3