Heat Recovery from Wastewater—A Review of Available Resource

Author:

Nagpal HimanshuORCID,Spriet JanORCID,Murali MadhuORCID,McNabola AonghusORCID

Abstract

The EU Directive 2018/2001 recognized wastewater as a renewable heat source. Wastewater from domestic, industrial and commercial developments maintains considerable amounts of thermal energy after discharging into the sewer system. It is possible to recover this heat by using technologies like heat exchangers and heat pumps; and to reuse it to satisfy heating demands. This paper presents a review of the literature on wastewater heat recovery (WWHR) and its potential at different scales within the sewer system, including the component level, building level, sewer pipe network level, and wastewater treatment plant (WWTP) level. A systematic review is provided of the benefits and challenges of WWHR across each of these levels taking into consideration technical, economic and environmental aspects. This study analyzes important attributes of WWHR such as temperature and flow dynamics of the sewer system, impacts of WWHR on the environment, and legal regulations involved. Existing gaps in the WWHR field are also identified. It is concluded that WWHR has a significant potential to supply clean energy at a scale ranging from buildings to large communities and districts. Further attention to WWHR is needed from the research community, policymakers and other stakeholders to realize the full potential of this valuable renewable heat source.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference116 articles.

1. Statistical Pocketbook 2019,2019

2. Regulation (EU) 2018/1999 of the European Parliament and of the Council of 11 December 2018 on the Governance of the Energy Union and Climate Action;Off. J. Eur. Union,2018

3. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources;Off. J. Eur. Union,2018

4. Sustainable Europe Investment Plan European Green Deal Investment Plan,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3