Total Weak Roman Domination in Graphs

Author:

Cabrera Martínez Abel,Montejano Luis P.,Rodríguez-Velázquez Juan A.

Abstract

Given a graph G = ( V , E ) , a function f : V → { 0 , 1 , 2 , ⋯ } is said to be a total dominating function if ∑ u ∈ N ( v ) f ( u ) > 0 for every v ∈ V , where N ( v ) denotes the open neighbourhood of v. Let V i = { x ∈ V : f ( x ) = i } . We say that a function f : V → { 0 , 1 , 2 } is a total weak Roman dominating function if f is a total dominating function and for every vertex v ∈ V 0 there exists u ∈ N ( v ) ∩ ( V 1 ∪ V 2 ) such that the function f ′ , defined by f ′ ( v ) = 1 , f ′ ( u ) = f ( u ) - 1 and f ′ ( x ) = f ( x ) whenever x ∈ V ∖ { u , v } , is a total dominating function as well. The weight of a function f is defined to be w ( f ) = ∑ v ∈ V f ( v ) . In this article, we introduce the study of the total weak Roman domination number of a graph G, denoted by γ t r ( G ) , which is defined to be the minimum weight among all total weak Roman dominating functions on G. We show the close relationship that exists between this novel parameter and other domination parameters of a graph. Furthermore, we obtain general bounds on γ t r ( G ) and, for some particular families of graphs, we obtain closed formulae. Finally, we show that the problem of computing the total weak Roman domination number of a graph is NP-hard.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference21 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. From w-Domination in Graphs to Domination Parameters in Lexicographic Product Graphs;Bulletin of the Malaysian Mathematical Sciences Society;2023-04-20

2. From (Secure) w-Domination in Graphs to Protection of Lexicographic Product Graphs;Bulletin of the Malaysian Mathematical Sciences Society;2021-05-28

3. Weak Roman domination in rooted product graphs;AIMS Mathematics;2021

4. Secure w-Domination in Graphs;Symmetry;2020-11-25

5. Total Domination in Rooted Product Graphs;Symmetry;2020-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3