Secure w-Domination in Graphs

Author:

Martínez Abel CabreraORCID,Estrada-Moreno AlejandroORCID,Rodríguez-Velázquez Juan A.ORCID

Abstract

This paper introduces a general approach to the idea of protection of graphs, which encompasses the known variants of secure domination and introduces new ones. Specifically, we introduce the study of secure w-domination in graphs, where w=(w0,w1,…,wl) is a vector of nonnegative integers such that w0≥1. The secure w-domination number is defined as follows. Let G be a graph and N(v) the open neighborhood of v∈V(G). We say that a function f:V(G)⟶{0,1,…,l} is a w-dominating function if f(N(v))=∑u∈N(v)f(u)≥wi for every vertex v with f(v)=i. The weight of f is defined to be ω(f)=∑v∈V(G)f(v). Given a w-dominating function f and any pair of adjacent vertices v,u∈V(G) with f(v)=0 and f(u)>0, the function fu→v is defined by fu→v(v)=1, fu→v(u)=f(u)−1 and fu→v(x)=f(x) for every x∈V(G)\{u,v}. We say that a w-dominating function f is a secure w-dominating function if for every v with f(v)=0, there exists u∈N(v) such that f(u)>0 and fu→v is a w-dominating function as well. The secure w-domination number of G, denoted by γws(G), is the minimum weight among all secure w-dominating functions. This paper provides fundamental results on γws(G) and raises the challenge of conducting a detailed study of the topic.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference21 articles.

1. From Italian domination in lexicographic product graphs to w-domination in graphs;Cabrera Martínez;arXiv,2020

2. Protection of a graph;Cockayne;Util. Math.,2005

3. On Secure Domination in Graphs

4. Vertex Covers and Secure Domination in Graphs

5. Bounds on weak roman and 2-rainbow domination numbers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3