A Test Detecting the Outliers for Continuous Distributions Based on the Cumulative Distribution Function of the Data Being Tested

Author:

Jäntschi LorentzORCID

Abstract

One of the pillars of experimental science is sampling. Based on the analysis of samples, estimations for populations are made. There is an entire science based on sampling. Distribution of the population, of the sample, and the connection among those two (including sampling distribution) provides rich information for any estimation to be made. Distributions are split into two main groups: continuous and discrete. The present study applies to continuous distributions. One of the challenges of sampling is its accuracy, or, in other words, how representative the sample is of the population from which it was drawn. To answer this question, a series of statistics have been developed to measure the agreement between the theoretical (the population) and observed (the sample) distributions. Another challenge, connected to this, is the presence of outliers - regarded here as observations wrongly collected, that is, not belonging to the population subjected to study. To detect outliers, a series of tests have been proposed, but mainly for normal (Gauss) distributions—the most frequently encountered distribution. The present study proposes a statistic (and a test) intended to be used for any continuous distribution to detect outliers by constructing the confidence interval for the extreme value in the sample, at a certain (preselected) risk of being in error, and depending on the sample size. The proposed statistic is operational for known distributions (with a known probability density function) and is also dependent on the statistical parameters of the population—here it is discussed in connection with estimating those parameters by the maximum likelihood estimation method operating on a uniform U(0,1) continuous symmetrical distribution.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3