Abstract
The objective of this article is to present the results of our investigations concerning the environmental conditions that can be expected during the embedding process into fibre metal laminates and the consequences for a sensor node for structural health monitoring. The idea behind this investigation is to determine for which manufacturing conditions the integration of sensor nodes into the material can be done and to identify limits for this. The sensor nodes consist of commercially available integrated circuits and passive components soldered onto an adhesive-less flexible printed circuit board. They are tested under conditions above their specified limits, to find out if they are still working reliably after experiencing 155 min of 180 ∘C and 7 bar of pressure. Apart from occurring temperature damage, the effect of surrounding fibres potentially pushing away the components under the amount of pressure of the manufacturing process, as well as the potential of shorts due to conductive fibers are investigated and suitable solutions to prevent this are evaluated. One experiment exceeding the typical requirements of a fiber metal laminate embedding process for structural components will be conducted at 250 ∘C for 10 h, in order to determine the limits of embedding electronic sensor nodes. This time and temperature combination is expected to cause irreversible damage to the electronic system. Results show that it is possible to integrate electronics into materials under conditions far above their specifications when precautions are taken but also that there are limits that must not be exceeded during the embedding process.
Funder
Deutsche Forschungsgemeinschaft
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry