Clinical Value of Information Entropy Compared with Deep Learning for Ultrasound Grading of Hepatic Steatosis

Author:

Chen Jheng-Ru,Chao Yi-PingORCID,Tsai Yu-Wei,Chan Hsien-Jung,Wan Yung-Liang,Tai Dar-InORCID,Tsui Po-Hsiang

Abstract

Entropy is a quantitative measure of signal uncertainty and has been widely applied to ultrasound tissue characterization. Ultrasound assessment of hepatic steatosis typically involves a backscattered statistical analysis of signals based on information entropy. Deep learning extracts features for classification without any physical assumptions or considerations in acoustics. In this study, we assessed clinical values of information entropy and deep learning in the grading of hepatic steatosis. A total of 205 participants underwent ultrasound examinations. The image raw data were used for Shannon entropy imaging and for training and testing by the pretrained VGG-16 model, which has been employed for medical data analysis. The entropy imaging and VGG-16 model predictions were compared with histological examinations. The diagnostic performances in grading hepatic steatosis were evaluated using receiver operating characteristic (ROC) curve analysis and the DeLong test. The areas under the ROC curves when using the VGG-16 model to grade mild, moderate, and severe hepatic steatosis were 0.71, 0.75, and 0.88, respectively; those for entropy imaging were 0.68, 0.85, and 0.9, respectively. Ultrasound entropy, which varies with fatty infiltration in the liver, outperformed VGG-16 in identifying participants with moderate or severe hepatic steatosis (p < 0.05). The results indicated that physics-based information entropy for backscattering statistics analysis can be recommended for ultrasound diagnosis of hepatic steatosis, providing not only improved performance in grading but also clinical interpretations of hepatic steatosis.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3