Fatty liver classification via risk controlled neural networks trained on grouped ultrasound image data

Author:

Yen Tso-Jung,Yang Chih-Ting,Lee Yi-Ju,Chen Chun-houh,Yang Hsin-Chou

Abstract

AbstractUltrasound imaging is a widely used technique for fatty liver diagnosis as it is practically affordable and can be quickly deployed by using suitable devices. When it is applied to a patient, multiple images of the targeted tissues are produced. We propose a machine learning model for fatty liver diagnosis from multiple ultrasound images. The machine learning model extracts features of the ultrasound images by using a pre-trained image encoder. It further produces a summary embedding on these features by using a graph neural network. The summary embedding is used as input for a classifier on fatty liver diagnosis. We train the machine learning model on a ultrasound image dataset collected by Taiwan Biobank. We also carry out risk control on the machine learning model using conformal prediction. Under the risk control procedure, the classifier can improve the results with high probabilistic guarantees.

Funder

Academia Sinica, Taiwan

Publisher

Springer Science and Business Media LLC

Reference35 articles.

1. Li, J. et al. Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999–2019: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 4, 389–398 (2019).

2. Hernaez, R. et al. Diagnostic accuracy and reliability of ultrasonography for the detection of fatty liver: A meta-analysis. Hepatology 53(3), 1082–1090 (2011).

3. Pirmoazen, A. M., Khurana, A., Kaffas, A. E. & Kamaya, A. Quantitative ultrasound approaches for diagnosis and monitoring hepatic steatosis in nonalcoholic fatty liver disease. Theranostics 10(9), 4277–4289 (2020).

4. Ballestri, S., Mantovani, A., Byrne, C. D., Lonardo, A. & Targher, G. Diagnostic accuracy of ultrasonography for the detection of hepatic steatosis: An updated metaanalysis of observational studies. Metab. Target Organ Damage 1, 7 (2021).

5. Avola, D., Cinque, L., Fagioli, A., Foresti, G. & Mecca, A. Ultrasound medical imaging techniques: A survey. ACM Comput. Surv. 54(3), 67 (2021).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3