Aerodynamic Analysis of the Opening Hood Structures at Exits of High-Speed Railway Tunnels

Author:

Sun Haocheng12,Wang Yingxue12,Jin Xianghai12,Liu Hengyuan12,Luo Yang12

Affiliation:

1. Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China

2. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China

Abstract

As train operating speeds increase, the aerodynamic characteristics of the train within the tunnel become more pronounced, and effectively addressing the issue of micro-pressure wave (MPW) over-limits becomes especially crucial. This paper utilized the control volume method to investigate the key influencing parameters of tunnel exit hoods on the mitigation effectiveness of MPWs. Additionally, numerical simulation methods were used to validate these crucial parameters. The analysis considered various opening ratios, different opening forms, and the influence of hoods at tunnel entrances and exits on the amplitude and spatial distribution patterns of MPWs. A design methodology that comprehensively takes into account the advantages of tunnel entrance and exit hoods was proposed. The results showed that a higher opening ratio of tunnel exit hoods led to lower MPW amplitudes. Compared to without opening in the hood, when the opening ratio of the exit hood reached 90%, the maximum amplitude of MPWs at a distance of 20 m from the hood outlet decreased by 48.7%. Various opening forms of exit hoods resulted in distinct spatial distribution patterns of MPW amplitudes, with amplitudes near the openings notably higher than in other areas. There were differences in the mitigation mechanisms between entrance and exit hoods. In comparison to entrance hoods, exit hoods exhibited higher mitigation efficiency within a specific range of MPW amplitudes. Additionally, when both entrance and exit hoods were installed, they achieved the most effective mitigation of MPWs.

Funder

Technological Key Research and Development Program of China Railway Corporation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3