Experimental Study of the Dynamic Characteristics and Microscopic Mechanism of Lightweight Soil Modified with Expanded Polystyrene and Sisal Fibre

Author:

Zhuang Xinshan1,Zhao Jinze1

Affiliation:

1. Hubei Provincial Ecological Road Engineering Technology Research Center, Hubei University of Technology, Wuhan 430068, China

Abstract

With the increasing demand and use of highways, railways and tunnels in China, the phenomena of foundation settlement, uneven deformation and ground cracking caused by the cyclic loading by traffic are becoming increasingly significant. There is now an emphasis on research to prevent or decrease these phenomena by mixing new materials into the soil body. In this study, cyclic loading tests were conducted on lightweight soils modified with expanded polystyrene (EPS) and sisal. A GDS true/dynamic triaxial apparatus was used to study the dynamic elastic modulus and damping ratio of clays with different dosages of EPS and sisal fibre. The modified soil samples were tested, and then, they underwent micro-scale analysis. The results showed that, with the continuous increase in EPS doping and dynamic stress, the trend of the growth of the dynamic strain of the specimens increased. At the same time, with the increase in the dynamic strain, the dynamic elastic modulus decreased, and the trend increased with increasing doping of the soil with EPS particles. A comparison of the improvement effect coefficient of the soil samples showed that the most suitable EPS doping volume was 5%. Different dosages of sisal fibre were added to the most suitable EPS-modified lightweight soil, and the dynamic elastic modulus first increased and then decreased with increasing sisal dosage. In addition, the damping ratio first increased and then decreased. The best dynamic performance of the soil was obtained when the dosage of sisal was 1.2%. Nuclear magnetic resonance and electron microscope scanning tests verified that, when the sisal doping was 1.2%, the soil particles had the largest compactness, the best interparticle bonding and the best improvement effect.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference31 articles.

1. Study on microstructure of silt with different clay content;Huang;Chin. J. Geotech. Eng.,2020

2. Experimental study on fluidity of ready-mixed flow EPS light soil;Fu;Highway,2023

3. Characteristics of dynamic shear modulus and damping ratio and the structural formula of EPS particles lightweight soil;Hou;Soil Dyn. Earthq. Eng.,2023

4. Dynamic modulus and damping ratio characteristics of EPS mixed soil;Gao;Chin. J. Geotech. Eng.,2017

5. Influence of compaction test type on the compaction characteristics of lightweight soil of EPS particles;Yang;Rock Soil Mech.,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3