Evaluation of Deformation and Settlement Properties of Cement-Stabilized Silt Mixed with EPS Beads of Various Sizes

Author:

Ali Sharafat1,Yong Feng1,Jamil Farhad1,Mehmood Mudassir2

Affiliation:

1. College of Civil Engineering and Architecture, Henan University of Technology, Zhengzhou 450001, China

2. Department of Civil Engineering and Architecture, Zhengzhou University, Zhengzhou 450001, China

Abstract

The expansion of China’s highways and railways, as well as the growing demand for them, has focused attention on the impact of traffic loads on foundation settling, uneven deformation, and ground cracking. These effects have garnered considerable research attention, with particular emphasis placed on integrating innovative materials into the soil matrix. This investigation involved loading experiments utilizing a combination of lightweight soil, expanded polystyrene (EPS), and cement. Consolidation tests assessed the extent of deformation and settlement, incorporating varying proportions of EPS and cement. The test results show that when subjected to confined conditions, the stress–strain relationship curve assumes a hyperbolic shape closely linked to the e-p curve. This shape effectively captures the unique structural characteristics exhibited by lightweight soils. As the size of the EPS particles and the applied stress increase, a corresponding rise in the strain of the specimens is observed. Simultaneously, as the strain magnitude increases, the elastic modulus experiences a decline. Additionally, it is noted that this trend further increases as the doping of the cement with EPS particles increases. When the EPS volume ratio and cement mix ratio remain constant across different specimens, there is a decrease in structural strength as the size of the EPS increases. In lightweight soil, settlement can occur rapidly, with approximately 95% of total consolidation deformation happening within a few minutes, which suggests that the settlement is instantaneous and primarily consolidation settlement. The structural strength of lightweight soil shows a negative correlation with the size of EPS, implying that larger EPS size may lead to a reduction in strength. Therefore, it is recommended to consistently use EPS beads with a diameter of 3–4 mm during construction.

Funder

Young Backbone Teachers projects of Henan Province

Innovative Funds Plan of the Henan University of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3