Recurrent Embedded Topic Model

Author:

Vargas Carlos1ORCID,Ponce Hiram2ORCID

Affiliation:

1. Facultad de Ingeniería, Universidad Panamericana, Josemaría Escrivá de Balaguer 101, Aguascalientes 20290, Aguascalientes, Mexico

2. Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin 498, Mexico City 03920, Mexico

Abstract

In this paper we propose the Recurrent Embedded Topic Model (RETM) which is a modification of the Embedded Topic Modelling (ETM) by reusing the Continuous Bag of Words (CBOW) that the model had implemented and applying it to a recurrent neural network (LSTM), using the order of the words of the text, in the CBOW space as the recurrency of the LSTM, while calculating the topic–document distribution of the model. This approach is novel because the ETM and Latent Dirichlet Allocation (LDA) do not use the order of the words while calculating the topic proportions for each text, making worse predictions in the end. The RETM is a topic-modelling technique that vastly improves (by more than 15 times in train data and between 10% and 90% better based on test dataset values for perplexity) the quality of the topics that were calculated for the datasets used in this paper. This model is explained in detail throughout the paper and presents results on different use cases on how the model performs against ETM and LDA. The RETM can be used with better accuracy for any topic model-related problem.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference51 articles.

1. Taylor, P. (2023, July 18). Volume of Data/Information Created, Captured, Copied, and Consumed Worldwide from 2010 to 2020, with Forecasts from 2021 to 2025. Available online: https://www.statista.com/statistics/871513/worldwide-data-created/.

2. InterSystems (2023, July 18). Use Cases for Unstructured Data. Available online: https://www.odbms.org/wp-content/uploads/2014/08/Use-Cases-for-Unstructured-Data-White-Paper.pdf.

3. Probabilistic topic models;Blei;Commun. ACM,2012

4. A Survey of Topic Modeling in Text Mining;Alghamdi;Int. J. Adv. Comput. Sci. Appl.,2015

5. Latent Dirichlet Allocation;Blei;J. Mach. Learn. Res.,2003

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recurrent Embedded Topic Model;Applied Sciences;2023-10-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3