Implementation of the HHL Algorithm for Solving the Poisson Equation on Quantum Simulators

Author:

Daribayev Beimbet1ORCID,Mukhanbet Aksultan1ORCID,Imankulov Timur1ORCID

Affiliation:

1. Department of Computer Science, Faculty of Information Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan

Abstract

The Poisson equation is a fundamental equation of mathematical physics that describes the potential distribution in static fields. Solving the Poisson equation on a grid is computationally intensive and can be challenging for large grids. In recent years, quantum computing has emerged as a potential approach to solving the Poisson equation more efficiently. This article uses quantum algorithms, particularly the Harrow–Hassidim–Lloyd (HHL) algorithm, to solve the 2D Poisson equation. This algorithm can solve systems of equations faster than classical algorithms when the matrix A is sparse. The main idea is to use a quantum algorithm to transform the state vector encoding the solution of a system of equations into a superposition of states corresponding to the significant components of this solution. This superposition is measured to obtain the solution of the system of equations. The article also presents the materials and methods used to solve the Poisson equation using the HHL algorithm and provides a quantum circuit diagram. The results demonstrate the low error rate of the quantum algorithm when solving the Poisson equation.

Funder

Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan under the project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Quantum Approach for Exploring the Numerical Results of the Heat Equation;Algorithms;2024-07-25

2. OPTIMIZING QUANTUM ALGORITHMS FOR SOLVING THE POISSON EQUATION;Scientific Journal of Astana IT University;2024-06-30

3. A Quantum Annealing Approach to Fluid Dynamics Problems Solving Navier-Stokes Equations;2024 9th International Conference on Smart and Sustainable Technologies (SpliTech);2024-06-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3