High-precision quantum algorithms for partial differential equations

Author:

Childs Andrew M.123,Liu Jin-Peng124,Ostrander Aaron125

Affiliation:

1. Joint Center for Quantum Information and Computer Science, University of Maryland, MD 20742, USA

2. Institute for Advanced Computer Studies, University of Maryland, MD 20742, USA

3. Department of Computer Science, University of Maryland, MD 20742, USA

4. Department of Mathematics, University of Maryland, MD 20742, USA

5. Department of Physics, University of Maryland, MD 20742, USA

Abstract

Quantum computers can produce a quantum encoding of the solution of a system of differential equations exponentially faster than a classical algorithm can produce an explicit description. However, while high-precision quantum algorithms for linear ordinary differential equations are well established, the best previous quantum algorithms for linear partial differential equations (PDEs) have complexity poly(1/ϵ), where ϵ is the error tolerance. By developing quantum algorithms based on adaptive-order finite difference methods and spectral methods, we improve the complexity of quantum algorithms for linear PDEs to be poly(d,log(1/ϵ)), where d is the spatial dimension. Our algorithms apply high-precision quantum linear system algorithms to systems whose condition numbers and approximation errors we bound. We develop a finite difference algorithm for the Poisson equation and a spectral algorithm for more general second-order elliptic equations.

Funder

National Science Foundation

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dense outputs from quantum simulations;Journal of Computational Physics;2024-10

2. Protocols for trainable and differentiable quantum generative modeling;Physical Review Research;2024-09-12

3. Towards an efficient variational quantum algorithm for solving linear equations;Communications in Theoretical Physics;2024-09-10

4. Nonlinear dynamics as a ground-state solution on quantum computers;Physical Review Research;2024-09-06

5. Quantum algorithms for nonlinear partial differential equations;Bulletin des Sciences Mathématiques;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3