An Optimal Scheduling Technique for Smart Grid Communications over 5G Networks

Author:

Orumwense Efe F.1ORCID,Abo-Al-Ez Khaled2ORCID

Affiliation:

1. Department of Mechanical and Mechatronic Engineering, Cape Peninsula University of Technology, Cape Town 7535, South Africa

2. Centre for Distributed Power and Electronic Systems, Cape Peninsula University of Technology, Cape Town 7535, South Africa

Abstract

The latest wireless network technology, Fifth Generation (5G) new radio (NR), is considered to be an emerging wireless network solution for smart grid (SG) communications owing to its ultra-reliable low latency and larger bandwidth properties. Packet scheduling is one of the mechanisms that plays a vital function in the performance of smart grid communications since it is highly responsible for the bandwidth resource allocation processes. The union of a scheduling approach and a beamforming technique can, however, boost the performance of multi-users in the communication system. Since 5G communication is not intended for smart grid communications, the performance of a scheduling approach must be properly utilized and effectively optimized. This paper evaluates and examines the Deadline Scheduling with Commitment (DSC) scheduling approach and further demonstrates that the performance of the popular Earliest Deadline First (EDF) scheduling approach can be richly enhanced by our modification and improvement of the approach. A novel Optimal Usage and Dropping Scheduling (OUD) approach for proper utilization and assigning of Resource Blocks (RBs) is also proposed to meet the stringent requirements of smart grid communications. Several performance indexes are employed to ascertain the performance of these scheduling approaches, and the results indicate that our proposed OUD approach shows a superior scheduling performance. It is concluded that 5G communications can be effectively employed in smart grids while utilizing the proposed OUD scheduling approach.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3