A Survey on Green Enablers: A Study on the Energy Efficiency of AI-Based 5G Networks

Author:

Ezzeddine Zeinab12,Khalil Ayman3,Zeddini Besma2ORCID,Ouslimani Habiba Hafdallah1ORCID

Affiliation:

1. Laboratory of Electrochemistry of Materials for Energetics (LEME) EA 4416, University Paris, 92410 Nanterre, France

2. SATIE Laboratory CNRS–UMR 8029, CY Tech, CY Cergy Paris University, 95000 Cergy, France

3. Adnan Kassar School of Business, Lebanese American University, Beirut 1102-2801, Lebanon

Abstract

In today’s world, the significance of reducing energy consumption globally is increasing, making it imperative to prioritize energy efficiency in 5th-generation (5G) networks. However, it is crucial to ensure that these energy-saving measures do not compromise the Key Performance Indicators (KPIs), such as user experience, quality of service (QoS), or other important aspects of the network. Advanced wireless technologies have been integrated into 5G network designs at multiple network layers to address this difficulty. The integration of emerging technology trends, such as machine learning (ML), which is a subset of artificial intelligence (AI), and AI’s rapid improvements have made the integration of these trends into 5G networks a significant topic of research. The primary objective of this survey is to analyze AI’s integration into 5G networks for enhanced energy efficiency. By exploring this intersection between AI and 5G, we aim to identify potential strategies and techniques for optimizing energy consumption while maintaining the desired network performance and user experience.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3