Microseismic Data-Direct Velocity Modeling Method Based on a Modified Attention U-Net Architecture

Author:

Zhou Yixiu1ORCID,Han Liguo1,Zhang Pan1ORCID,Zeng Jingwen1ORCID,Shang Xujia1ORCID,Huang Wensha1

Affiliation:

1. College of Geo-Exploration Science and Technology, Jilin University, Changchun 130012, China

Abstract

In microseismic monitoring, the reconstruction of a reliable velocity model is essential for precise seismic source localization and subsurface imaging. However, traditional methods for microseismic velocity inversion face challenges in terms of precision and computational efficiency. In this paper, we use deep learning (DL) algorithms to achieve precise and efficient real-time microseismic velocity modeling, which holds significant importance for ensuring engineering safety and preventing geological disasters in microseismic monitoring. Given that this task was approached as a non-linear regression problem, we adopted and modified the Attention U-Net network for inversion. Depending on the degree of coupling among microseismic events, we trained the network using both single-event and multi-event simulation records as feature datasets. This approach can achieve velocity modeling when dealing with inseparable microseismic records. Numerical tests demonstrate that the Attention U-Net can automatically uncover latent features and patterns between microseismic records and velocity models. It performs effectively in real time and achieves high precision in velocity modeling for Tilted Transverse Isotropy (TTI) velocity structures such as anticlines, synclines, and anomalous velocity models. Furthermore, it can provide reliable initial models for traditional methods.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jilin Province

Lift Project for Young Science and Technology Talents of Jilin Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3