Affiliation:
1. Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Jamal Abdul Nasser Street, Safat 13109, Kuwait
2. Environment Public Authority, Fourth Ring Road, Shuwaikh Industrial 70050, Kuwait
Abstract
Prolonged and excessive use of antibiotics has resulted in the development of antimicrobial resistance (AMR), which is considered an emerging global challenge that warrants a deeper understanding of the antibiotic-resistant gene elements (ARGEs/resistomes) involved in its rapid dissemination. Currently, advanced molecular methods such as high-throughput quantitative polymerase chain reaction (HT-qPCR) and shotgun metagenomic sequencing (SMS) are commonly applied for the surveillance and monitoring of AMR in the environment. Although both methods are considered complementary to each other, there are some appreciable differences that we wish to highlight in this communication. We compared both these approaches to map the ARGEs in the coastal sediments of Kuwait. The study area represents an excellent model as it receives recurrent emergency waste and other anthropogenic contaminants. The HT-qPCR identified about 100 ARGs, 5 integrons, and 18 MGEs (total—122). These ARGs coded for resistance against the drug classes of beta-lactams > aminoglycoside > tetracycline, macrolide lincosamide streptogramin B (MLSB) > phenicol > trimethoprim, quinolone, and sulfonamide. The SMS picked a greater number of ARGs (402), plasmid sequences (1567), and integrons (168). Based on the evidence, we feel the SMS is a better method to undertake ARG assessment to fulfil the WHO mandate of “One Health Approach.” This manuscript is a useful resource for environmental scientists involved in AMR monitoring.
Funder
Kuwait Institute for Scientific Research
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献