Abstract
AbstractThe concept of the antibiotic resistome was introduced just over a decade ago, and since then, active resistome studies have been conducted. In the present study, we describe the previously established concept of the resistome, which encompasses all types of antibiotic resistance genes (ARGs), and the important findings from each One-Health sector considering this concept, thereby emphasizing the significance of the One-Health approach in understanding ARG transmission. Cutting-edge research methodologies are essential for deciphering the complex resistome structure in the microbiomes of humans, animals, and the environment. Based on the recent achievements of resistome studies in multiple One-Health sectors, future directions for resistome research have been suggested to improve the understanding and control of ARG transmission: (1) ranking the critical ARGs and their hosts; (2) understanding ARG transmission at the interfaces of One-Health sectors; (3) identifying selective pressures affecting the emergence, transmission, and evolution of ARGs; and (4) elucidating the mechanisms that allow an organism to overcome taxonomic barriers in ARG transmission.
Funder
MOE | Korea Environmental Industry and Technology Institute
Ministry of Health, Welfare and Family Affairs | Korea Centers for Disease Control & Prevention
Publisher
Springer Science and Business Media LLC
Subject
Clinical Biochemistry,Molecular Biology,Molecular Medicine,Biochemistry
Reference122 articles.
1. Fleming, A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. 1929. Bull. World Health Organ. 79, 780–790 (2001).
2. Yong, D. et al. Characterization of a new metallo-beta-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemother. 53, 5046–5054 (2009).
3. Liu, Y. Y. et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 16, 161–168 (2016).
4. Rammelkamp, C. H. & Maxon, T. Resistance of Staphylococcus aureus to the Action of Penicillin. Proc. Soc. Exp. Biol. Med. 51, 386–389 (1942).
5. Stekel, D. First report of antimicrobial resistance pre-dates penicillin. Nature 562, 192 (2018).
Cited by
156 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献