UAV Detection and Tracking in Urban Environments Using Passive Sensors: A Survey

Author:

Yan Xiaochen1ORCID,Fu Tingting2ORCID,Lin Huaming3ORCID,Xuan Feng3ORCID,Huang Yi3,Cao Yuchen4ORCID,Hu Haoji4ORCID,Liu Peng2ORCID

Affiliation:

1. HDU-ITMO Joint School, Hangzhou Dianzi University, Hangzhou 310018, China

2. School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China

3. Hangzhou Security and Technology Evaluation Center, Hangzhou 310020, China

4. College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China

Abstract

Unmanned aerial vehicles (UAVs) have gained significant popularity across various domains, but their proliferation also raises concerns about security, public safety, and privacy. Consequently, the detection and tracking of UAVs have become crucial. Among the UAV-monitoring technologies, those suitable for urban Internet-of-Things (IoT) environments primarily include radio frequency (RF), acoustic, and visual technologies. In this article, we provide a comprehensive review of passive UAV surveillance technologies, encompassing RF-based, acoustic-based, and vision-based methods for UAV detection, localization, and tracking. Our research reveals that certain lightweight UAV depth detection models have been effectively downsized for deployment on edge devices, facilitating the integration of edge computing and deep learning. In the city-wide anti-UAV, the integration of numerous urban infrastructure monitoring facilities presents a challenge in achieving a centralized computing center due to the large volume of data. To address this, calculations can be performed on edge devices, enabling faster UAV detection. Currently, there is a wide range of anti-UAV systems that have been deployed in both commercial and military sectors to address the challenges posed by UAVs. In this article, we provide an overview of the existing military and commercial anti-UAV systems. Furthermore, we propose several suggestions for developing general-purpose UAV-monitoring systems tailored for urban environments. These suggestions encompass considering the specific requirements of the application scenario, integrating detection and tracking mechanisms with appropriate countermeasures, designing for scalability and modularity, and leveraging advanced data analytics and machine learning techniques. To promote further research in the field of UAV-monitoring systems, we have compiled publicly available datasets comprising visual, acoustic, and radio frequency data. These datasets can be employed to evaluate the effectiveness of various UAV-monitoring techniques and algorithms. All of the datasets mentioned are linked in the text or in the references. Most of these datasets have been validated in multiple studies, and researchers can find more specific information in the corresponding papers or documents. By presenting this comprehensive overview and providing valuable insights, we aim to advance the development of UAV surveillance technologies, address the challenges posed by UAV proliferation, and foster innovation in the field of UAV monitoring and security.

Funder

Zhejiang Public Information Industry Co., Ltd.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3