Temperature Effect of van der Waals Epitaxial GaN Films on Pulse-Laser-Deposited 2D MoS2 Layer

Author:

Susanto Iwan,Tsai Chi-Yu,Ho Yen-Teng,Tsai Ping-Yu,Yu Ing-SongORCID

Abstract

Van der Waals epitaxial GaN thin films on c-sapphire substrates with a sp2-bonded two-dimensional (2D) MoS2 buffer layer, prepared by pulse laser deposition, were investigated. Low temperature plasma-assisted molecular beam epitaxy (MBE) was successfully employed for the deposition of uniform and ~5 nm GaN thin films on layered 2D MoS2 at different substrate temperatures of 500, 600 and 700 °C, respectively. The surface morphology, surface chemical composition, crystal microstructure, and optical properties of the GaN thin films were identified experimentally by using both in situ and ex situ characterizations. During the MBE growth with a higher substrate temperature, the increased surface migration of atoms contributed to a better formation of the GaN/MoS2 heteroepitaxial structure. Therefore, the crystallinity and optical properties of GaN thin films can obviously be enhanced via the high temperature growth. Likewise, the surface morphology of GaN films can achieve a smoother and more stable chemical composition. Finally, due to the van der Waals bonding, the exfoliation of the heterostructure GaN/MoS2 can also be conducted and investigated by transmission electron microscopy. The largest granular structure with good crystallinity of the GaN thin films can be observed in the case of the high-temperature growth at 700 °C.

Funder

Ministry of Science and Technology, Taiwan

the Ministry of Research and Technology, Research Council, and the National Innovation Re-public of Indonesia

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3