Methylene Blue Dye Adsorption from Wastewater Using Hydroxyapatite/Gold Nanocomposite: Kinetic and Thermodynamics Studies

Author:

Sharma Kashma,Sharma Shreya,Sharma Vipasha,Mishra Pawan KumarORCID,Ekielski AdamORCID,Sharma VishalORCID,Kumar VijayORCID

Abstract

The present work demonstrates the development of hydroxyapatite (HA)/gold (Au) nanocomposites to increase the adsorption of methylene blue (MB) dye from the wastewater. HA nanopowder was prepared via a wet chemical precipitation method by means of Ca(OH)2 and H3PO4 as starting materials. The biosynthesis of gold nanoparticles (AuNPs) has been reported for the first time by using the plant extract of Acrocarpus fraxinifolius. Finally, the as-prepared HA nanopowder was mixed with an optimized AuNPs solution to produce HA/Au nanocomposite. The prepared HA/Au nanocomposite was studied by using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM) with Energy Dispersive X-Ray Analysis (EDX) analysis. Adsorption studies were executed by batch experiments on the synthesized composite. The effect of the amount of adsorbent, pH, dye concentration and temperature was studied. Pseudo-first-order and pseudo-second-order models were used to fit the kinetic data and the kinetic modeling results reflected that the experimental data is perfectly matched with the pseudo-first-order kinetic model. The dye adsorbed waste materials have also been investigated against Pseudomonas aeruginosa, Micrococcus luteus, and Staphylococcus aureus bacteria by the agar well diffusion method. The inhibition zones of dye adsorbed samples are more or less the same as compared to as-prepared samples. The results so obtained indicates the suitability of the synthesized sample to be exploited as an adsorbent for effective treatment of MB dye from wastewater and dye adsorbed waste as an effective antibacterial agent from an economic point of view.

Funder

University Grants Commission

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3