A Newly Isolated Stress-Resistant Bacterial Strain with Potential Use in Bioremediation of Dyeing Effluents

Author:

Yang Yuan-Hang1,Zhong Han-Yang1,Pan Bei2,Wang Zi-Wen2,Du Zong-Jun1ORCID,Ye Meng-Qi134

Affiliation:

1. Marine College, Shandong University, Weihai 264209, China

2. SDU-ANU Joint Science College, Shandong University, Weihai 264209, China

3. Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China

4. Shenzhen Research Institute, Shandong University, Shenzhen 518057, China

Abstract

The issue of water pollution is one of the hot topics of global concern, which requires us to efficiently treat pollutants in water, especially printing and dyeing sewage. There are varieties of dyestuffs and intermediates, which are complex and difficult to degrade, and they even contain heavy metals. In this study, a bacterial strain named Q3-6 with potential for sewage treatment was isolated and its physiological, biochemical, and genomic characteristics, and potential application value, were further investigated. The genome sequence confirmed that it belongs to Bacillus thuringiensis. Strain Q3-6 has a significant decolorization effect on the dyes. The decolorization rate for Brilliant blue G-250 (0.1 g/L) and Congo Red (0.1 g/L) can reach 93.9% and 91.9%, respectively. In addition, strain Q3-6 is resistant to many kinds of antibiotics and heavy metals. Further, it has strong heat resistance, and heating at 80 °C can promote the biomass of the strain. Genomic analysis revealed the presence of genes related to heat shock proteins (GroES, GrpE, DnaJ, GroEL, DnaK, ClpB, and ClpA) in strain Q3-6. These results suggest the strain’s exceptional resilience and adaptability to intricate environments with heavy metals, antibiotics, or high-temperature environments, suggesting its pivotal role in the bioremediation of complex contaminated effluents.

Funder

Guangdong Basic and Applied Basic Research Foundation

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3