Abstract
To provide analytic materials for business management for smart retail solutions, it is essential to recognize various customer behaviors (CB) from video footage acquired by in-store cameras. Along with frequent changes in needs and environments, such as promotion plans, product categories, in-store layouts, etc., the targets of customer behavior recognition (CBR) also change frequently. Therefore, one of the requirements of the CBR method is the flexibility to adapt to changes in recognition targets. However, existing approaches, mostly based on machine learning, usually take a great deal of time to re-collect training data and train new models when faced with changing target CBs, reflecting their lack of flexibility. In this paper, we propose a CBR method to achieve flexibility by considering CB in combination with primitives. A primitive is a unit that describes an object’s motion or multiple objects’ relationships. The combination of different primitives can characterize a particular CB. Since primitives can be reused to define a wide range of different CBs, our proposed method is capable of flexibly adapting to target CB changes in retail stores. In experiments undertaken, we utilized both our collected laboratory dataset and the public MERL dataset. We changed the combination of primitives to cope with the changes in target CBs between different datasets. As a result, our proposed method achieved good flexibility with acceptable recognition accuracy.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献