Deep understanding of shopper behaviours and interactions using RGB-D vision

Author:

Paolanti MarinaORCID,Pietrini Rocco,Mancini Adriano,Frontoni Emanuele,Zingaretti Primo

Abstract

AbstractIn retail environments, understanding how shoppers move about in a store’s spaces and interact with products is very valuable. While the retail environment has several favourable characteristics that support computer vision, such as reasonable lighting, the large number and diversity of products sold, as well as the potential ambiguity of shoppers’ movements, mean that accurately measuring shopper behaviour is still challenging. Over the past years, machine-learning and feature-based tools for people counting as well as interactions analytic and re-identification were developed with the aim of learning shopper skills based on occlusion-free RGB-D cameras in a top-view configuration. However, after moving into the era of multimedia big data, machine-learning approaches evolved into deep learning approaches, which are a more powerful and efficient way of dealing with the complexities of human behaviour. In this paper, a novel VRAI deep learning application that uses three convolutional neural networks to count the number of people passing or stopping in the camera area, perform top-view re-identification and measure shopper–shelf interactions from a single RGB-D video flow with near real-time performances has been introduced. The framework is evaluated on the following three new datasets that are publicly available: TVHeads for people counting, HaDa for shopper–shelf interactions and TVPR2 for people re-identification. The experimental results show that the proposed methods significantly outperform all competitive state-of-the-art methods (accuracy of 99.5% on people counting, 92.6% on interaction classification and 74.5% on re-id), bringing to different and significative insights for implicit and extensive shopper behaviour analysis for marketing applications.

Funder

Università Politecnica delle Marche

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Computer Vision and Pattern Recognition,Hardware and Architecture,Software

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3