Abstract
The periodic impulse characteristics caused by rolling bearing damage are weak in the incipient failure stage. Thus, these characteristics are always drowned out by background noise and other harmonic interference. A novel approach based on multi-resolution singular value decomposition (MRSVD) is proposed in order to extract the periodic impulse characteristics for incipient fault detection. With the MRSVD method, the vibration signal is first decomposed to obtain a group of approximate signals and detailed signals with different resolutions. The first detail signal is mainly composed of noise and the last approximate signal is mainly composed of harmonic interference. Combined with the kurtosis index, the hidden periodic impulse signal will be extracted from the detail signals (in addition to the first detail signal). Thus, the incipient fault detection of a rolling bearing can be fulfilled according to the envelope demodulation spectrum of the extracted periodic impulse signal. The effectiveness of the proposed method has been demonstrated with both simulation and experimental analyses.
Funder
Natural Science Foundation of China
Natural Science Foundation of Fujian Province
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献