Author:
Yun Hyesun,Kwak Min-Gi,Park KeumHwan,Kim Youngmin
Abstract
As electronics become more portable and compact, the demand for high-performance thermally conductive composites is increasing. Given that the thermal conductivity correlates with the content of thermally conductive fillers, it is important to fabricate composites with high filler loading. However, the increased viscosity of the composites upon the addition of these fillers impedes the fabrication of filler-reinforced composites through conventional methods. In this study, hexagonal-boron-nitride (h-BN)-pattern-embedded aluminum oxide (Al2O3) composites (Al/h-BN/Al composites) were fabricated by coating a solution of h-BN onto a silicone-based Al2O3 composite through a metal mask with square open areas. Because this method does not require the dispersion of h-BN into the Al2O3 composite, composites with high filler loading could be fabricated without the expected problems arising from increased viscosity. Based on the coatability and thixotropic rheological behaviors, a composite with 85 wt.% Al2O3 was chosen to fabricate Al/h-BN/Al composites. The content of the Al2O3 and the h-BN of the Al/h-BN/Al-1 composite was 74.1 wt.% and 12.8 wt.%, respectively. In addition to the increased filler content, the h-BN of the composite was aligned in a parallel direction by hot pressing. The in-plane (kx) and through-plane (kz) thermal conductivity of the composite was measured as 4.99 ± 0.15 Wm−1 K−1 and 1.68 ± 0.2 Wm−1 K−1, respectively. These results indicated that the method used in this study is practical not only for increasing the filler loading but also for achieving a high kx through the parallel alignment of h-BN fillers.
Funder
Ministry of Trade, Industry and Energy
Subject
General Materials Science,General Chemical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献