Many-Scale Investigations of Deformation Behavior of Polycrystalline Composites: II—Micro-Macro Simultaneous FE and Discrete Dislocation Dynamics Simulation

Author:

Schneider YanlingORCID,Rapp Dennis-Michael,Yang Yifang,Wasserbäch Werner,Schmauder SiegfriedORCID

Abstract

The current work numerically investigates commercial polycrystalline Ag/17vol.%SnO2 composite tensile deformation behavior with available experimental data. Such composites are useful for electric contacts and have a highly textured initial material status after hot extrusion. Experimentally, the initial sharp fiber texture and the number of Σ3-twins were reduced due to tensile loading. The local inhomogeneous distribution of hardness and Young’s modulus gradually decreased from nanoindentation tests, approaching global homogeneity. Many-scale simulations, including micro-macro simultaneous finite element (FE) and discrete dislocation dynamics (DDD) simulations, were performed. Deformation mechanisms on the microscale are fundamental since they link those on the macro- and nanoscale. This work emphasizes micromechanical deformation behavior. Such FE calculations applied with crystal plasticity can predict local feature evolutions in detail, such as texture, morphology, and stress flow in individual grains. To avoid the negative influence of boundary conditions (BCs) on the result accuracy, BCs are given on the macrostructure, i.e., the microstructure is free of BCs. The particular type of 3D simulation, axisymmetry, is preferred, in which a 2D real microstructural cutout with 513 Ag grains is applied. From FE results, Σ3-twins strongly rotated to the loading direction (twins disappear), which, possibly, caused other grains to rotate away from the loading direction. The DDD simulation treats the dislocations as discrete lines and can predict the resolved shear stress (RSS) inside one grain with dependence on various features as dislocation density and lattice orientation. The RSS can act as the link between the FE and DDD predictions.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3