Phanogracilins A–C, New Bibenzochromenones of Crinoid Phanogenia gracilis (Hartlaub, 1890)

Author:

Vasileva Elena A.1ORCID,Berdyshev Dmitrii V.1,Mishchenko Natalia P.1ORCID,Gerasimenko Andrey V.2,Menchinskaya Ekaterina S.1,Pislyagin Evgeniy A.1ORCID,Chingizova Ekaterina A.1,Kaluzhskiy Leonid A.3ORCID,Dautov Salim Sh.4,Fedoreyev Sergey A.1ORCID

Affiliation:

1. G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia

2. Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia

3. Institute of Biomedical Chemistry, Moscow 119121, Russia

4. A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690041, Russia

Abstract

Three new bibenzochromenones named phanogracilins A–C (1–3) were isolated from the crinoid Phanogenia gracilis. The structure of 1 was established using X-ray crystallography as 5,5′,6,6′,8,8′-hexahydroxy-2,2′-dipropyl-4H,4′H-[7,9′-bibenzo[g]chromene]-4,4′-dione. This allowed us to assign reliably 2D NMR signals for compound 1 and subsequently for its isomer 2 that differed in the connecting position of two benzochromenone moieties (7,10′ instead of 7,9′), and compound for 3 that differed in the length of the aliphatic chain of one of the fragments. Compound 4 was derived from 1 in alkaline conditions, and its structure was elucidated as 5,5′,6′,8,8′-pentahydroxy-2,2′-dipropyl-4H,4′H-[7,9′-bibenzo[g]chromene]-4,4′,6,9-tetraone. Even though compounds 1–4 did not contain stereo centers, they possessed notable optical activity due to sterical hindrances, which limited the internal rotation of two benzochromenone fragments around C(7)–C(9′/10′) bonds. Isolated bibenzochromenones 1–4 were tested for their antiradical, neuroprotective and antimicrobial activities. Compounds 1, 3 and 4 demonstrated significant antiradical properties towards ABTS radicals higher than the positive control trolox. Compounds 1 and 4 exhibited moderate neuroprotective activity, increasing the viability of rotenone-treated Neuro-2a cells at a concentration of 1 µM by 9.8% and 11.8%, respectively. Compounds 1 and 3 at concentrations from 25 to 100 μM dose-dependently inhibited the growth of Gram-positive bacteria S. aureus and yeast-like fungi C. albicans, and they also prevented the formation of their biofilms. Compounds 2 and 4 exhibited low antimicrobial activity.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3