Numerical Modelling Techniques for Stability Analysis of Slopes Reinforced with Shallow Roots

Author:

Dyson Ashley P.1ORCID,Tolooiyan Ali1,Griffiths D. V.2

Affiliation:

1. Computational Engineering for Sustainability Lab (CES-Lab), School of Engineering, University of Tasmania, Hobart, TAS 7001, Australia

2. Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA

Abstract

It is well recognised that plant vegetation and roots are capable of improving the shear strength of hillslopes by reinforcing soil shear resistance. Several key factors influencing the level of slope reinforcement include root geometry, orientation and strength. To assess the mechanical performance of vegetated slopes using numerical methods, root structures can be represented by beam and pile elements to mirror root behaviour. In contrast, root reinforcement can be modelled indirectly through a root cohesion factor, supplying additional strength to the soil surrounding the root zone. In this paper, correlations between these two numerical methods are presented, highlighting the applicability of each technique based on various root characteristics. Three types of root geometries are presented, consisting of a primary tap root, a secondary cohesion zone surrounding the main root and a root branching process. The results of the finite element analysis demonstrate the variation in the slope factor of safety for both methods, with a set of correlations between the two modelling approaches. A series of stability charts are presented for each method, quantifying the effects of root characteristics on slope reinforcement.

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3