Affiliation:
1. State Key Laboratory of Ocean Engineering Shanghai Jiao Tong University Shanghai China
2. Department of Geography University of Sheffield Sheffield UK
3. Nanjing Center China Geological Survey Nanjing China
4. Chinese Academy of Geological Sciences Beijing China
Abstract
AbstractTyphoon‐induced landslides are widespread, damaging and deadly. In this study, we elucidated their spatiotemporal features through investigations in Southeast coastal China and proposed a numerical model that involves typhoon wind load, preferential infiltration and root reinforcement. The wind load is calculated through a combination of the autoregressive method and a multi‐degree‐of‐freedom tree swaying mode, transmitting to the slope through the wind–tree interaction. Taproots of trees are modelled as piles, and root–soil interfaces are modelled as preferential infiltration boundaries. Using the numerical model, we quantitatively assessed the impacts of wind load, rainfall infiltration and root reinforcement on the slope stability and compared results with cases in Waipaoa and Wairoa (New Zealand). Results suggest that the impacts of trees depend heavily on meteorological and geological conditions. Trees play a destabilizing role in Southeast China during a typhoon but a stabilizing role in the cases in New Zealand. For slopes in Southeast China with a thick soil layer (>root depth), strong wind load and preferential flow resulting from root–soil interfaces, rather than slope surface infiltration, significantly decrease the slope stability in a short time. Slope failure occurred in all scenarios that account for the preferential infiltration, and its combination with a Force 14 typhoon wind load can fail the slope at 10 h after the typhoon initiation. Differently, tree roots in cases in New Zealand can penetrate through the thin soil layer (<1 m) and provide considerable additional resistance to stabilize the slope.
Funder
National Natural Science Foundation of China
Subject
Earth and Planetary Sciences (miscellaneous),Earth-Surface Processes,Geography, Planning and Development
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献