Evaluating Sand Particle Surface Smoothness Using a New Computer-Based Approach to Improve the Characterization of Macroscale Parameters

Author:

Tessari Anthony1ORCID,Muszynski Mark2

Affiliation:

1. Department of Civil, Structural and Environmental Engineering, School of Engineering and Applied Sciences, University at Buffalo, 212 Ketter Hall, Buffalo, NY 14260, USA

2. Department of Civil Engineering, School of Engineering and Applied Science, Gonzaga University, 502 E. Boone Ave., Spokane, WA 99258, USA

Abstract

The analysis of sands, and the foundation systems with which they interact, are largely dependent on macroscale behavioral parameters that represent the aggregated response of several microscale characteristics. This research paper examines the influence of surface texture, or smoothness, on the behavior of sands. The challenge of estimating or measuring smoothness, due to its microscale feature domain, is addressed through an examination of six artificially graded sand specimens. These specimens are evaluated both visually and numerically to characterize their surface smoothness. The first approach described is a simple visual method that uses a smoothness scale consistent with those of roundness and sphericity. This method, which can be performed with a tool as simple as a hand lens, evaluates a group of representative particles collectively. The second approach is also a visual evaluation, but it utilizes images obtained via scanning electronic microscopy, traditional optical microscopy, and newer low-cost digital microscopes that can be rapidly connected to a smartphone or laptop. To validate these visual estimates, a novel third approach is introduced. This approach is a more objective numerical analysis measurement technique that enables rapid and economic quantification of smoothness. This technique may assist both practitioners and academics in their understanding of the macroscale response of coarse-grained soils. In addition to the visual methods, this research also conducted several laboratory index tests to observe the mechanical behavior of the specimens, considering their particle shape and surface smoothness properties. The results indicate that angular sands have greater minimum and maximum void ratios, a larger difference between the minimum and maximum void ratios, greater critical state friction angles, and greater flow rates through an orifice of fixed size. When adjusted for surface smoothness using the proposed approach, the behavior of the sands—particularly the limit void ratio results—appears to be more predictable in some cases. These results provide additional evidence of particle smoothness contributing to the strength behavior of sand, which may be particularly useful in the domains of slope stability, land reclamation, soil–structure interaction, and soil dynamics.

Publisher

MDPI AG

Subject

General Medicine

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3