Energy-Based Approach: Analysis of a Laterally Loaded Pile in Multi-Layered Non-Linear Elastic Soil Strata

Author:

Arvan Prakash AnkithaORCID,Arockiasamy Madasamy

Abstract

Several studies have been reported in published literature on analytical solutions for a laterally loaded pile installed in a homogeneous single soil layer. However, piles are rarely installed in an ideal homogeneous single soil layer. The present study describes a new continuum-based analysis or energy-based approach for predicting the pile displacement responses subjected to static lateral loads and moments considering the soil non-linearity. This analytical analysis treats the pile as an elastic Euler–Bernoulli beam and the soil as a three-dimensional (3D) continuum in which the non-linear elastic properties are described by a modulus degradation relationship. The principle of virtual work was applied to the energy equation of a pile–soil system in order to obtain the governing differential equation for the pile and soil displacements. An iterative procedure was adopted to solve the equations numerically using a finite difference method (FDM). The pile displacement response was obtained using the software MATLAB R2021a, and the results from the energy-based method were compared with those obtained from the field test data as well as the finite element analysis (FEA) based on the software ANSYS Workbench 2021R1. The present study investigated the effect of explicit incorporation of soil properties and layering through a parametric study in order to understand the importance of predicting appropriate pile displacement responses in a linear elastic soil system. The responses indicated that the effect of soil layers and their thicknesses, pile properties and the variation in soil moduli have a direct impact on the displacements of piles subjected to lateral loading. Hence, a proper emphasis has to be given to account for the soil non-linearity. Considering the effect of soil non-linearity, it is observed that the results obtained from the energy-based method agreed well with the field measured values and those obtained from the FEA. The results indicated a difference of approximately less than 7% between the proposed method and the FEA. The approach presented in this study can be further extended to piles embedded in multi-layered soil strata subjected to the combined action of axial loads, lateral loads and moments. Furthermore, the same approach can be extended to study the response of the soil to group piles.

Funder

Florida Department of Transportation

Publisher

MDPI AG

Subject

General Medicine

Reference92 articles.

1. The evolution of analysis methods for laterally loaded piles through time;Moussa,2017

2. Wirtschaftliche dalbenformen und deren berechnung;Blum;Bautechnik,1932

3. The Ultimate Resistance of Rigid Piles against Transversal Forces;Hansen,1961

4. Lateral Resistance of Piles in Cohesionless Soils

5. Lateral Resistance of Piles in Cohesive Soils

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3