Design and Selection of Inductor Current Feedback for the Sliding-Mode Controlled Hybrid Boost Converter

Author:

Chincholkar Satyajit1,Tariq Mohd2ORCID,Abdelhaq Maha3,Alsaqour Raed4ORCID

Affiliation:

1. Department of Electronics and Telecommunication Engineering, School of E&TC Engineering, MIT Academy of Engineering, Alandi, Pune 412105, India

2. Department of Electrical Engineering, ZHCET, Aligarh Muslim University, Aligarh 202002, India

3. Department of Information Technology, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

4. Department of Information Technology, College of Computing and Informatics, Saudi Electronic University, Riyadh 93499, Saudi Arabia

Abstract

The hybrid step-up converter is a fifth-order system with a dc gain greater than the traditional second-order step-up configuration. Considering their high order, several state variables are accessible for feedback purposes in the control of such systems. Therefore, choosing the best state variables is essential since they influence the system’s dynamic response and stability. This work proposes a methodical method to identify the appropriate state variables in implementing a sliding-mode (SM) controlled hybrid boost converter. A thorough comparison of two SM controllers based on various feedback currents is conducted. The frequency response technique is used to demonstrate how the SM method employing the current through the output inductor leads to an unstable response. The right-half s-plane poles and zeroes in the converter’s inner-loop transfer function, which precisely cancel one another, are what is causing the instability. On the other hand, a stable system may result from employing a SM controller with the current through the input inductor. Lastly, some experimental outcomes using the preferred SM control method are provided.

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3