Large-Signal Stability of the Quadratic Boost Converter Using a Disturbance Observer-Based Sliding-Mode Control

Author:

Chincholkar Satyajit1,Tariq Mohd2ORCID,Urooj Shabana3ORCID

Affiliation:

1. Department of Electronics and Telecommunication Engineering, School of E&TC Engineering, MIT Academy of Engineering, Pune 412105, India

2. Department of Electrical Engineering, ZHCET, Aligarh Muslim University, Aligarh 202002, India

3. Department of Electrical Engineering, College of Engineering, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

Abstract

The quadratic boost (QB) converter is a fourth-order system with a dc gain that is higher than the traditional second-order step-up configuration. The modern controllers that control these high-order dc–dc converters often only guarantee local stability around a steady-state equilibrium point, which is one of their primary drawbacks. In this article, a non-linear robust control law design to attain large-signal stability in this single switch QB converter is presented. In the presence of an unpredictable load, the control objective is to maintain the regulation of an output voltage. The Brunovsky canonical model of the converter was derived first, and the non-linear disturbance observer-based sliding-mode (SM) control law is designed based on it. An observer variable precisely estimates the output disturbances. The detailed process for deriving the control signal is described in this paper and the large-signal stability of the closed-loop converter system is ensured via the Lyapunov function. Finally, some simulation results are shown to validate the usefulness of the given controller.

Funder

Princess Nourah bint Abdulrahman University Researchers Supporting Project Number

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3