Study of Chlorella sorokiniana Cultivation in an Airlift Tubular Photobioreactor Using Anaerobic Digestate Substrate

Author:

Psachoulia Paraskevi1,Chatzidoukas Christos1ORCID,Samaras Petros2ORCID

Affiliation:

1. Laboratory of Biochemical and Biotechnological Processes (LB2P), Department of Chemical Engineering, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece

2. Laboratory of Technologies for Environmental Protection and Utilization of Food By-Products, Department of Food Science and Technology, International Hellenic University (IHU), Sindos, 57400 Thessaloniki, Greece

Abstract

Microalgae offer a promising solution for efficiently treating high-nitrogen wastewater and recovering valuable nutrients. To optimize microalgae growth and nutrient assimilation, case-dependent studies are essential to demonstrate the process’s potential. This study aimed to evaluate the treatment capacity of high-nitrogen anaerobic digestion effluent as a nutrient source for a C. sorokiniana microalgal culture in a tubular photobioreactor. The study had two primary objectives: to assess how the concentration and composition of the digestate influence microalgae growth, and to identify the preferred nitrogen forms assimilated by the microalgae during long-term, continuous operation. A 20 L tubular airlift bioreactor was constructed and used in batch mode; various digestate concentrations were examined with ammonia nitrogen levels reaching to 160 mg/L. These experiments revealed a biomass growth rate of up to 130 mg/L/d and an ammonia nitrogen assimilation rate ranging from 8.3 to 12.5 mg/L/d. The presence of phosphorous proved essential for microalgae growth, and the growth entered a stationary phase when the initial phosphorous was fully assimilated. A nitrogen-to-phosphorous (N/P) ratio of 10 supported efficient species growth. While ammonia was the preferred nitrogen form for microalgae, they could also utilize alternative forms such as organic and nitrate nitrogen, depending on the specific digestate properties. The results from the continuous photobioreactor operation confirmed the findings from the batch mode, especially regarding the initial nitrogen and phosphorous content. An important condition for nearly complete ammonia removal was the influent dilution rate, to balance the nitrogen assimilation rate. Moreover, treated effluent was employed as dilution medium, contributing to a more environmentally sustainable water management approach for the entire process, at no cost to the culture growth rate.

Funder

European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH—CREATE—INNOVATE

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3