Abstract
Optimal sensor placement is a significant task for structural health monitoring (SHM). In this paper, an SHM system is designed which can recognize the different impact location and impact degree in the composite plate. Firstly, the finite element method is used to simulate the impact, extracting numerical signals of the structure, and the wavelet decomposition is used to extract the band energy. Meanwhile, principal component analysis (PCA) is used to reduce the dimensions of the vibration signal. Following this, the non-dominated sorting genetic algorithm (NSGA-II) is used to optimize the placement of sensors. Finally, the experimental system is established, and the Product-based Neural Network is used to recognize different impact categories. Three sets of experiments are carried out to verify the optimal results. When three sensors are applied, the average accuracy of the impact recognition is 59.14%; when the number of sensors is four, the average accuracy of impact recognition is 76.95%.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献