Sensor Distribution Optimization for Composite Impact Monitoring Based on AR Model and LPP

Author:

Li PengORCID,Tan Jianbin,Ding Ying,Huang Peiwei,Tang Gan,Zhan Jinqing

Abstract

The aim of this article is to provide a sensor distribution optimization method for the effective impact monitoring of composite plates with fewer sensors. In this research, the number of sensors and the minimum difference between categories are used as objective functions I and II, respectively, where the minimum difference is the Euclidean distance between different influence categories. The dual objective functions are defined by means of finite element analysis, the autoregressive (AR) model, and locality−preserving projection (LPP). The sensor distribution is optimized based on Multi−Objective Particle Swarm Optimization (MOPSO). Finally, an impact monitoring method is provided, and an experimental platform is built to verify the method. According to the optimization results, different grid sizes have a certain impact on the identification results, with the smaller the grid size, the smaller the minimum difference between categories. Within a given grid size, the minimum difference between categories increases with the increasing number of sensors. Experiments show that the higher the number of sensors, the higher the recognition rate of the system. Comparing the experimental results with the energy analysis of wavelet bands and PCA methods, it is found that the method used in this study has a higher recognition rate. This research provides an impact monitoring method based on sensor distribution optimization. And the effectiveness of the method is verified by experiments. It provides a useful reference and choice for the structure condition monitoring of composite material plates.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference26 articles.

1. Localizations and force reconstruction of low-velocity impact in a composite panel using optical fiber sensors;Park;Adv. Compos. Mater.,2012

2. Impact localization on composite wing using 1D array FBG sensor and RMS/correlation based reference database algorithm;Shrestha;Compos. Struct.,2015

3. Impact Damage Detection in Light Composite Sandwich Panels;Pieczonka;Procedia Eng.,2014

4. Localization of low-velocity impact by using fiber brag grating sensors based on wavelet packet energy eigenvector;Guo;J. Vib. Shock.,2017

5. Impact localization algorithm on wing model using optical fiber sensors based on time-difference identification;Li;J. Optoelectron.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3