Experimental Investigation of Engine Performance for 2nd Generation Biodiesel Derived from Mg2Zr5O12 Catalyst

Author:

Singh VeenaORCID,Chavan Supriya B.,Sharma Yogesh C.

Abstract

In the present study, experimental analyses were conducted by using biodiesel derived from second-generation feedstock. In terms of cost and accessibility, second-generation feedstock has gained more attention due to its environmental approach. Waste-cooking-oil-derived methyl ester was produced through a transesterification reaction in the presence of a synthesized magnesium zirconate (Mg2Zr5O12) heterogeneous catalyst. This trans-esterified waste cooking oil (WCO) was used as biodiesel and was blended with diesel in 10%, 20%, 30%, 40%, and 50% by volume ratio for further analysis. The fuel properties of pure and blended biodiesel were investigated in terms of flash point, density, kinematic viscosity, and lower heating value as per the American Society for Testing and Materials (ASTM) D-6751 standards. For each blended fuel, the engine performance and gaseous emissions trend with engine loads of 0, 3, 6, 9, and 12 kg were measured on a Kirloskar TV1 IC engine. The results indicated that the 40% blended biodiesel has the maximum brake thermal efficiency (BTE) of 19.13% and exhaust gas temperature (EGT) of 6.98% increment, also showing an increase with respect to engine load. On the other hand, brake-specific fuel consumption (BSFC) was highest for 40% blending as 36.48% increase, and that decreases with the increase in engine loads. Significant reductions in carbon monoxide (CO) and unburned hydrocarbon (HC) emissions were observed for 40% blended fuel and were 34.78% and 38.1% reduction, respectively. CO and HC emissions decreased with respect to the engine load. Meanwhile, reverse trends for carbon dioxide (CO2) and nitrogen oxide (NOx) have been observed as 14.57% and 27.85% increases for 100% biodiesel. CO2 and NOx increased with increase in engine load. The mass balance and environmental factor of crude and purified biodiesel were studied to show the environmental suitability of synthesized product. Overall, the results showed that the blended biodiesel can be used as a substitute and has an advantage over diesel fuel. The main contribution derived from this work is to improve engine performance and gaseous emission by using blended biodiesel derived from a recyclable heterogeneous catalyst and waste-cooking-oil feedstock.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference45 articles.

1. FuturEnergy https://futurenergyweb.es/en/the-dual-challenge-more-energy-less-carbon-is-the-biggest-challenge-facing-the-global-energy-system-over-the-next-20-years/

2. Biodiesel Market Reports https://www.marketsandmarkets.com/Market-Reports/Global-Biodiesel-Market-190.html

3. Biodiesel: 2020 World Market Outlook and Forecast https://mcgroup.co.uk/researches/biodiesel

4. Characteristics of polycyclic aromatic hydrocarbons emissions of diesel engine fueled with biodiesel and diesel

5. A comprehensive review on biodiesel as an alternative energy resource and its characteristics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3