Affiliation:
1. Department of Electronic Engineering, Interdisciplinary Program in IT-Bio Convergence Systems, Chosun University, Gwangju 61452, Republic of Korea
Abstract
This paper presents a sensor fusion method for navigation of unmanned underwater vehicles. The method combines Lie theory into Kalman filter to estimate and compensate for the misalignment between the sensors: inertial navigation system and Doppler Velocity Log (DVL). In the process and measurement model equations, a 3-dimensional Euclidean group (SE(3)) and 3-sphere space (S3) are used to express the pose (position and attitude) and misalignment, respectively. SE(3) contains position and attitude transformation matrices, and S3 comprises unit quaternions. The increments in pose and misalignment are represented in the Lie algebra, which is a linear space. The use of Lie algebra facilitates the application of an extended Kalman filter (EKF). The previous EKF approach without Lie theory is based on the assumption that a non-differentiable space can be approximated as a differentiable space when the increments are sufficiently small. On the contrary, the proposed Lie theory approach enables exact differentiation in a differentiable space, thus enhances the accuracy of the navigation. Furthermore, the convergence and stability of the internal parameters, such as the Kalman gain and measurement innovation, are improved.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献