Process Monitoring in Friction Stir Welding Using Convolutional Neural Networks

Author:

Hartl RomanORCID,Bachmann AndreasORCID,Habedank Jan Bernd,Semm ThomasORCID,Zaeh Michael F.

Abstract

Preliminary studies have shown the superiority of convolutional neural networks (CNNs) compared to other network architectures for determining the surface quality of friction stir welds. In this paper, CNNs were employed to detect cavities inside friction stir welds by evaluating inline measured process data. The aim was to determine whether CNNs are suitable for identifying surface defects exclusively, or if the approach is transferable to internal weld defects. For this purpose, 120 welds were produced and examined by ultrasonic testing, which was the basis for labeling the data as “good” or “defective.” Different types of artificial neural network were tested for predicting the placement of the welds into the defined classes. It was found that the way of labeling the data is significant for the accuracy achievable. When the complete welds were uniformly labeled as “good” or “defective,” an accuracy of 98.5% was achieved by a CNN, which was a significant improvement compared to the state of the art. When the welds were labeled segment-wise, an accuracy of 79.2% was obtained by using a CNN, showing that a segment-wise prediction of the cavities is also possible. The results confirm that CNNs are well suited for process monitoring in friction stir welding and their application enables the identification of various defect types.

Funder

Allianz Industrie Forschung

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3