MIMR Criterion Application: Entropy Approach to Select the Optimal Quality Parameter Set Responsible for River Pollution

Author:

Mirauda Domenica,Ostoich Marco

Abstract

Surface water quality has a vital role when defining the sustainability of the ecological environment, public health, and the social and economic development of whole countries. Unfortunately, the rapid growth of the worldwide population together with the current climate change have mostly determined fluvial pollution. Therefore, the employment of effective methodologies, able to rapidly and easily obtain reliable information on the quality of rivers, is becoming fundamental for an efficient use of the resource and for the implementation of mitigation measures and actions. The Water Quality Index (WQI) is among the most widely used methods to provide a clear and complete picture of the contamination status of a river stressed by point and diffuse sources of natural and anthropic origin, leading the policy makers and end-users towards a more and more correct and sustainable management of the water resource. The parameter choice is one of the most important and complex phases and recent statistical techniques do not seem to show great objectivity and accuracy in the identification of the real water quality status. The present paper offers a new approach, based on entropy theory and known as the Maximum Information Minimum Redundancy (MIMR) criterion, to define the optimal subset of chemical, physical, and biological parameters, describing the variation of the river quality level in space and time and thus identifying its pollution sources. An algorithm was implemented for the MIMR criterion and applied to a sample basin of Northeast Italy in order to verify its reliability and accuracy. A comparison with the Principal Component Analysis (PCA) showed how the MIMR is more suitable and objective to obtain the optimal quality parameters set, especially when the amount of investigated variables is small, and can thus be a useful tool for fast and low-cost water quality assessment in rivers.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3