Intelligent optimal layout of drainage pipe network monitoring points based on information entropy theory

Author:

He Min,Zhang Yibo,Ma Zhaoxi,Zhao Qin

Abstract

The rapid expansion of urban drainage pipe networks, driven by economic development, poses significant challenges for efficient monitoring and management. The complexity and scale of these networks make it difficult to effectively monitor and manage the discharge of urban domestic sewage, rainwater, and industrial effluents, leading to illegal discharges, leakage, environmental pollution, and economic losses. Efficient management relies on a rational layout of drainage pipe network monitoring points. However, existing research on optimal monitoring point layout is limited, primarily relying on manual analysis and fuzzy clustering methods, which are prone to human bias and ineffective monitoring data. To address these limitations, this study proposes a coupled model approach for the automatic optimization of monitoring point placement in drainage pipe networks. The proposed model integrates the information entropy index, Bayesian reasoning, the Monte Carlo method, and the stormwater management model (SWMM) to optimize monitoring point placement objectively and measurably. The information entropy algorithm is utilized to quantify the uncertainty and complexity of the drainage pipe network, facilitating the identification of optimal monitoring point locations. Bayesian reasoning is employed to update probabilities based on observed data, while the Monte Carlo method generates probabilistic distributions for uncertain parameters. The SWMM is utilized to simulate stormwater runoff and pollutant transport within the drainage pipe network. Results indicate that (1) the relative mean error of the parameter inversion simulation results of the pollution source tracking model is linearly fitted with the information entropy. The calculation shows that there is a good positive linear correlation between them, which verifies the feasibility of the information entropy algorithm in the field of monitoring node optimization; (2) the information entropy algorithm can be well applied to the optimal layout of a single monitoring node and multiple monitoring nodes, and it can correspond well to the inversion results of the tracking model parameters; (3) the constructed monitoring point optimization model can well realize the optimal layout of monitoring points of a drainage pipe network. Finally, the pollution source tracking model is used to verify the effectiveness of the optimal layout of monitoring points, and the whole process has less human participation and a high degree of automation. The automated monitoring point optimization layout model proposed in this study has been successfully applied in practical cases, significantly improving the efficiency of urban drainage network monitoring and reducing the degree of manual participation, which has important practical significance for improving the level of urban water environment management.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3