Author:
Wen Shengping,Chen Zhihong,Li Chaoxian
Abstract
Bearings are commonly used machine elements and an important part of mechanical transmission. They are widely used in automobiles, airplanes, and various instruments and equipment. Bearing rollers are the most important components in a bearing and determine the performance, life, and stability of the bearing. In order to control the surface quality of the rollers, a machine vision system for bearing roller surface inspection is proposed. We briefly introduced the design of the machine vision system and then focused on the surface inspection algorithm. We proposed a multi-task convolutional neural network to detect defects. We extracted the features of the defects through a shared convolutional neural network, then classified the defects and calculated the position of the defects simultaneously. Finally, we determined if the bearing roller was qualified according to the position, category, and area of the defect. In addition, we explored various factors affecting performance and conducted a large number of experiments. We compared our method with the traditional methods and proved that our method had good stability and robustness.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献