Abstract
Test, verification, and development activities of vehicles with ADAS (Advanced Driver Assistance Systems) and ADF (Automated Driving Functions) generate large amounts of measurement data. To efficiently evaluate and use this data, a generic understanding and classification of the relevant driving scenarios is necessary. Currently, such understanding is obtained by using heuristic algorithms or even by manual inspection of sensor signals. In this paper, we apply deep learning on sensor time series data to automatically extract relevant features for classification of driving scenarios relevant for a Lane-Keep-Assist System. We compare the performance of convolutional and recurrent neural networks and propose two classification models. The first one is an online model for scenario classification during driving. The second one is an offline model for post-processing, providing higher accuracy.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference36 articles.
1. Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles,2018
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献