Deep Learning Applied to Scenario Classification for Lane-Keep-Assist Systems

Author:

Beglerovic Halil,Schloemicher ThomasORCID,Metzner Steffen,Horn Martin

Abstract

Test, verification, and development activities of vehicles with ADAS (Advanced Driver Assistance Systems) and ADF (Automated Driving Functions) generate large amounts of measurement data. To efficiently evaluate and use this data, a generic understanding and classification of the relevant driving scenarios is necessary. Currently, such understanding is obtained by using heuristic algorithms or even by manual inspection of sensor signals. In this paper, we apply deep learning on sensor time series data to automatically extract relevant features for classification of driving scenarios relevant for a Lane-Keep-Assist System. We compare the performance of convolutional and recurrent neural networks and propose two classification models. The first one is an online model for scenario classification during driving. The second one is an offline model for post-processing, providing higher accuracy.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference36 articles.

1. Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles,2018

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An approach for Lane Keeping Assist at higher speeds using Deep Neural Network;2023 IEEE 3rd Mysore Sub Section International Conference (MysuruCon);2023-12-01

2. Artificial Intelligence for Safety-Critical Systems in Industrial and Transportation Domains: A Survey;ACM Computing Surveys;2023-10-11

3. A real‐time lane detection network using two‐directional separation attention;Computer-Aided Civil and Infrastructure Engineering;2023-05-27

4. Lane Change Classification with Neural Networks for Automated Conversion of Logical Scenarios;Intelligent Autonomous Systems 17;2023

5. ADAS Technology Classifications Using a Modified Agile Process;2022 International Arab Conference on Information Technology (ACIT);2022-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3