Author:
Li Yan,Ma Yuyong,Tao Ye,Hou Zhengmeng
Abstract
In order to obtain a highly accurate profile of a measured three-dimensional (3D) free-form surface, a scanning measuring device has to produce extremely dense point cloud data with a great sampling rate. Bottlenecks are created owing to inefficiencies in manipulating, storing and transferring these data, and parametric modelling from them is quite time-consuming work. In order to effectively compress the dense point cloud data obtained from a 3D free-form surface during the real-time scanning measuring process, this paper presents an innovative methodology of an on-line point cloud data compression algorithm for 3D free-form surface scanning measurement. It has the ability to identify and eliminate data redundancy caused by geometric feature similarity between adjacent scanning layers. At first, the new algorithm adopts the bi-Akima method to compress the initial point cloud data; next, the data redundancy existing in the compressed point cloud is further identified and eliminated; then, we can get the final compressed point cloud data. Finally, the experiment is conducted, and the results demonstrate that the proposed algorithm is capable of obtaining high-quality data compression results with higher data compression ratios than other existing on-line point cloud data compression/reduction methods.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献